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1. Introduction
1.1 Definitions

The definition for robustness/ruggedness applied is "The robustness/ruggedness of an
analytical procedure is a measure of its capacity to remain unaffected by small, but

deliberate variations in method parameters and provides an indication of its reliability
during normal usage" [1].

Robustness can be described as the ability to reproduce the (analytical) method in different
laboratories or under different circumstances without the occurrence of unexpected
differences in the obtained result(s), and a robustness test as an experimental set-up to
evaluate the robustness of a method. The term ruggedness is frequently used as a synonym
[2-5]. Several definitions for robustness or ruggedness exist which are, however, all closely
related [1,6-10]. The one nowadays most widely applied in the pharmaceutical world is the
one given by the International Conference on Harmonisation of Technical Requirements for
the Registration of Pharmaceuticals for Human Use (ICH) [1] and which was given above.
Only in Ref. [9] a distinction between the terms ruggedness and robustness is made and
ruggedness is defined there as the degree of reproducibility of the test results obtained under
a variety of normal test conditions, such as different laboratories, different analysts, different
instruments, different lots of reagents, different elapsed assay times, different assay
temperatures, different days, etc. The latter definition will not be applied since detailed
guidelines exist for the estimation of the reproducibility and the intermediate precision
[11,12]. The ICH guidelines [1] also recommend that "one consequence of the evaluation of
robustness should be that a series of system suitability parameters (e.g. resolution tests) is
established to ensure that the validity of the analytical procedure is maintained whenever
used".
The assessment of the robustness of a method is not required yet by the ICH guidelines, but
it can be expected that in the near future it will become obligatory.
Robustness testing is nowadays best known and most widely applied in the pharmaceutical
world because of the strict regulations in that domain set by regulatory authorities which
require extensively validated methods. Therefore most definitions and existing
methodologies, e.g. those from the ICH, can be found in that field, as one can observe from
the above. However, this has no implications for robustness testing of analytical methods in
other domains and this guideline is therefore not restricted to pharmaceutical methods.

1.2 Situating robustness in method development and validation
Robustness tests were originally introduced to avoid problems in interlaboratory studies and
to identify the potentially responsible factors [2]. This means that a robustness test was
performed at a late stage in the method validation since interlaboratory studies are
performed in the final stage. Thus the robustness test was considered a part of method
validation related to the precision (reproducibility) determination of the method [3,13-16].
However, performing a robustness test late in the validation procedure involves the risk that
when a method is found not to be robust, it should be redeveloped and optimised. At this
stage much effort and money have already been spent in the optimisation and validation, and
therefore one wants to avoid this. Therefore the performance of a robustness test has been
shifting to earlier points of time in the life of the method. The Dutch Pharmacists Guidelines
[6], the ICH Guidelines [7] as well as some authors working in bio-analysis [17] consider
robustness a method validation topic performed during the development and optimisation
phase of a method, while others [18] consider it as belonging to the development of the
analytical procedure.
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The robustness test can be viewed as a part of method validation that is performed at the end
of method development or at the beginning of the validation procedure. The exact position
has relatively little influence on how it is performed.

1.3 Objectives of a robustness evaluation
The robustness test examines the potential sources of variability in one or a number of
responses of the method. In the first instance, the quantitative aspects (content
determinations, recoveries) of the method are evaluated. However besides these responses
also those for which system suitability test (SST) limits can be defined (e.g. resolution,
tailing factors, capacity factors, column efficiency in a chromatographic method) can be
evaluated (See Section 5).
To examine potential sources of variability, a number of factors are selected from the
operating procedure (See Section 2.1) and examined in an interval (See Section 2.2) that
slightly exceeds the variations which can be expected when a method is transferred from
one instrument to another or from one laboratory to another. These factors are then
examined in an experimental design (See Section 3) and the effect of the factors on the
response(s) of the method is evaluated (See Section 6). In this way the factors that could
impair the method performance are discovered. The analyst then knows that such factors
must be more strictly controlled during the execution of the method.
Another aim of a ruggedness/robustness test may be to predict reproducibility or
intermediate precision estimates [9]. In this guideline this kind of ruggedness testing is not
considered.
The information gained from the robustness test can be used to define SST limits (See
Section 7). This allows to determine SST limits based on experimental evidence and not
arbitrarily on the experience of the analyst.

1.4 The steps in a robustness test
The following steps can be identified: (a) identification of the factors to be tested, (b)
definition of the different levels for the factors, (c) selection of the experimental design, (d)
definition of the experimental protocol (complete experimental set-up), (e) definition of the
responses to be determined, (f) execution of the experiments and determination of the
responses of the method, (g) calculation of effects, (h) statistical and/or graphical analysis of
the effects, and (i) drawing chemically relevant conclusions from the statistical analysis and,
if necessary, taking measures to improve the performance of the method. These different
steps are schematically represented in Fig. 1 and are considered in more detail below. An
example of a worked-out robustness test case study is described in Section 8.

2. Selection of factors and levels
2.1. Selection of the factors
The factors to be investigated in a robustness test are related to the analytical procedure
(operational factors) and to the environmental conditions (environmental factors). The
operational factors are selected from the description of the analytical method (operating
procedure), whereas the environmental factors are not necessarily specified explicitly in the
analytical method.
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The selected factors can be quantitative (continuous), qualitative (discrete) or mixture
factors. Table 1 indicates a list of factors that could be considered during robustness testing
of chromatographic (liquid, gas or thin-layer chromatography) or electrophoretic methods.
The list is not exhaustive, but gives the reader an idea of the factors commonly examined. If
a sample preparation procedure (liquid-liquid extraction, solid-liquid extraction,
ultrafiltration, dialysis) is required before the chromatographic or electrophoretic analysis,
also factors from this procedure should be considered in the robustness testing. The number
of factors to be examined further increases when the analytical procedure requires a pre- or a
post-column derivatisation step.
Examples of quantitative factors are the pH of a solution, the temperature or the
concentration of a solution; of qualitative factors the batch of a reagent or the manufacturer
of a chromatographic column, and of a mixture factor the fraction of organic modifier in a
mobile phase.
The selected factors should represent those that are most likely to be changed when a
method is transferred between laboratories, analysts or instruments and that potentially
could influence the response(s) of the method.

2.1.1. Mixture-related factors
Mixtures of solvents are often used in analytical methods [5], e.g. mobile phases in
chromatography or buffers in electrophoresis are mixtures. In a mixture of p components
only p-1 can be changed independently. In HPLC analysis the mobile phase can contain,
besides the aqueous phase, one to three organic modifiers, yielding mixtures of two to four
components. In robustness testing both mixture variables and process variables (e.g. flow,
temperature, wavelength) need to be combined in the same experimental set-up. The
simplest procedure is to select maximally p-1 components to be examined as factors in the
experimental design. These p-1 factors are then mathematically independent, called mixture-
related variables [19] and are treated in the design in the same way as the process variables.
The pth component is used as adjusting component: its value is determined by that of the p-1
mixture related variables. The contributions of the different components in the mixture
preferably are expressed as volume fractions. As adjusting component the solvent occurring
with the highest fraction in the mixture is selected. (Example)
If one component of a mixture is found to be important, this means in practice that the
mixture composition as a whole is important. Since it is not possible to control only one of
the components of a mixture, the composition of the mixture as a whole should be more
strictly controlled.

Example. For a mobile phase containing methanol/acetonitrile/aqueous buffer with a
composition of 10:20:70 (V/V/V), the methanol (MeOH) content and the acetonitrile (ACN)
content can be selected as mixture-related variables and entered as factors in the design
while the buffer content is used as adjusting component. This latter component is not
considered to be a factor. The nominal levels (prescribed method conditions) of MeOH and
of ACN are then 0.10 and 0.20 respectively.

2.1.2. Quantitative factors
A set of factors often can be entered in the experimental design in different ways and this
can lead to physically more or less meaningful information. Therefore, when setting up a
robustness test the analyst should carefully consider how to define or formulate the factors.
As an example, consider the compounds of a buffer.
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The composition of a buffer can be defined by the concentrations of its acidic (Ca) and basic
(Cb) compounds (Example (a)).
There are several possibilities to examine these two compounds in a design, namely as two
different factors or combined to represent the pH and/or the ionic strength (µ). If one wants
to maximise the information extracted from a robustness test, it may be preferable to choose
the factors in such a way that the effects have a physical meaning. In that case one should
use pH and µ.
If the emphasis is only on measuring the robustness of the method then one could use the
first approach (Example (b)). This involves that when one of the two factors (Ca or Cb) is
found to be important, the second one also needs to be controlled strictly, as was the case
with mixtures.

In the second approach, the two concentrations are combined to one factor,
a
b

C
C .  Depending

on the variation introduced in this factor, one will simulate a change in the pH, in the ionic
strength or in both. If one keeps the molar ratio constant and changes the concentrations of
Ca and Cb then the factor examines a change in ionic strength. When the ratio is changed,
then one can introduce, depending on the kind of buffer used, a change in the pH (for

instance for a buffer like 
43

42
POH

PONaH  where only one compound contributes to µ) or both in

the pH and the ionic strength (for instance for a buffer like 
42

42
PONaH

HPONa  where both

compounds are contributing to µ) [5]. (Example (c))

Example
(a) A phosphate buffer description extracted from a monograph of Ref. [20] is for instance:

“Place 6.8g potassium dihydrogen phosphate, 500ml water and 1.8ml phosphoric acid in
a 1000ml volumetric flask. Adjust to volume with water and mix well. Render the
contents of the flask homogenous by shaking vigorously until all solids are dissolved”.

(b) The factors Ca and Cb are then defined as the volume H3PO4 per litre buffer and the
weight of NaH2PO4 per litre buffer, respectively.

(c) Factors Ca and Cb are combined to [ ]
[ ]43

42
POH

PONaH which is then multiplied with a given

constant to define the extreme levels for this factor. For the above described buffer two

possibilities exist. A first one is [ ]
[ ] 









43

42
POH

PONaH*a where the ratio between [NaH2PO4]

and [H3PO4] is kept constant and a = 1 represents the nominal situation while a<1 or
a>1 are the extreme levels. In this situation the pH is kept constant while the ionic
strength changes.

A second possibility is [ ]
[ ]43

42
POH

PONaH*a with again a = 1 the nominal level and a<1 or

a>1 the extreme levels. In this situation the ratio is changed which means that the pH is
changed.
It can also be remarked that

(i) for a buffer like 
42

42
PONaH

HPONa where both compounds are contributing to the ionic

strength this latter approach changes both the pH and µ,
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(ii) only one of the two above possibilities can be defined as a factor in an
experimental design.

Another regularly used way to describe the preparation of a buffer is to dissolve a given
amount of a salt, e.g. NaH2PO4 and then to adjust the pH by adding an acid (e.g. H3PO4) or a
base (e.g. NaOH). In this situation the pH should be chosen as a factor. The concentration of
the salt could also be examined as a second factor (Example).

Example. A buffer according to this type of definition is for instance: “10mM phosphate
buffer, pH 3.0”. In this situation the pH and the concentration phosphate (which represents
the ionic strength) could be examined as factors.

2.1.3. Qualitative factors
Often qualitative factors are also included. For instance, for chromatographic methods,
factors related to the column, such as the “column manufacturer", the "batch of the column"
or even columns from the same batch are examined. Examining columns from a same batch
is done to evaluate if characteristics unique to a single column, e.g. artefacts of the column
packing procedure, affect the results. Columns from different batches are used to evaluate
the batch-to-batch variations and from different manufacturers to examine the variations
between manufacturers.
However, one should be aware of the fact that no observed significant effect for such a
qualitative factor does not mean that this factor never has an influence. Examination of a
very limited number of representatives (e.g. different columns) does not allow to draw any
conclusion about the total population. Only conclusions concerning the robustness of the
method with respect to the examined representatives can be made (see also Section 8).
When including several qualitative factors in an experimental design impossible factor
combinations should be avoided. An example is the combination of the factors
"manufacturer of column material" and "batch of material" in one two-level design (Section
3). Selecting two levels for the manufacturer of material would give manufacturers I and J.
Selecting two levels for the batch of material is not possible since one cannot define batches
common to both manufacturers I and J.

2.2. Selection of the factor levels
2.2.1 Quantitative and mixture factors
The factor levels are usually defined symmetrically around the nominal level prescribed in
the operating procedure. The interval chosen between the extreme levels represents the
(somewhat exaggerated) limits between which the factors are expected to vary when a
method is transferred. In most case studies the levels are defined by the analyst according to
his/her personal opinion. However, selection of the levels also can be based on the precision
or the uncertainty [21] with which a factor can be set and reset. For instance the uncertainty
in the factor "pH of a solution" will depend on the uncertainty of the pH meter result and on
the uncertainty related to the calibration of the pH meter. Suppose one knows, for instance
from a systematic determination of the uncertainties [21], that the pH varies with a
confidence level of 95% in the interval pH ± 0.02. How to do this is described further in this
Section. Due to the uncertainty in the pH, one can expect the nominal pH (pHnom) to vary
between the levels pHnom ± 0.02. To select the extreme levels in a robustness experiment
this interval is enlarged to represent possible variations between instruments or laboratories.
This is done by multiplying the uncertainty with a coefficient k which gives as extreme
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levels pH ± k*0.02. The value k = 5 is proposed as default value. Other values can be used
when the analyst considers larger or smaller intervals for certain factors to be feasible. Since
the selected extreme levels are also subjected to uncertainty, k = 2 are the strictest conditions
for which extreme levels can be evaluated that are clearly different from each other. To be
clearly different from the nominal level, k >= 3 is needed to define the extreme levels.
To quantify the uncertainty in analytical measurements detailed Eurachem guidelines exist
[21]. They are quite tedious to apply since they try to quantify all sources of variability in a
factor level, which is not always obvious to do. Therefore, for the purpose of robustness
testing a simpler alternative is proposed [5].

Proposal. For each measured response one so-called absolute uncertainty is defined which
quantifies the most obvious source of variation. For instance (i) for a mass, consider the last
number given by the balance or a value specified by the manufacturer, as uncertain, e.g.
0.1mg for an analytical balance; (ii) for a volume, take the uncertainty in the internal volume
of the volumetric recipient, specified by the manufacturer, e.g. 0.08ml for a 100ml
volumetric flask; (iii) for a pH value, use the last digit of the display or a value specified by
the manufacturer of the pH meter. When a response is calculated from a combination of
measured components - as for instance is the case with a concentration which is the quotient
between a mass and a volume - the following rules are applied, (i) the absolute uncertainty
for a sum or a difference is the sum of the absolute uncertainties in the terms, and (ii) the
relative uncertainty (i.e. ratio of absolute uncertainty over response value) for a product or a
quotient is the sum of the relative uncertainties in the terms (Example).

Example. Consider for instance the determination of the uncertainty in the concentration of
a solution. Suppose a reagent solution with a nominal concentration of 100 mgL-1 is defined
in the operating procedure and is prepared in a 100 ml volumetric flask. The concentration C
is determined as C = m/V where m is the mass weighed and V the volume. To determine the
uncertainty in C the uncertainties in m and V are estimated first. The absolute uncertainty in
the mass is defined as 2 x 0.1mg (mass obtained from a difference of two measurements)
and in the volume as 0.08ml. This gives relative uncertainties of 0.02 and 0.0008, and for
the concentration of 0.0208. The absolute uncertainty in the concentration is then 2mgL-1

and the extreme levels to be examined in a design would be about 90 and 110mgL-1 (k=5).

The introduction of the coefficient k should also compensate for the occasional sources of
variability which where not taken into account in the estimation of the absolute uncertainty.
A similar reasoning as for the quantitative factors is valid for mixture factors (Example).

Example. Consider a mobile phase 30:70 V/V MeOH/H2O prepared using graduated
cylinders of 500ml for MeOH (uncertainty internal volume 1.88ml) and of 1000ml for water
(uncertainty internal volume 5ml). The fraction of methanol is calculated as MeOHf  =

OHMeOH

MeOH

2
VV

V
+

 (volumes considered additive for ease of calculation). When applying the

alternative estimates (not the Eurachem ones), only the uncertainties in the internal volumes
are taken into account. According to these rules the absolute uncertainty in MeOHf  is 0.004
and the one in OH2

f  0.01.
More detailed information about these uncertainties:
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MeOH H2O MeOH + H2O
Volume (= V) 300ml 700ml       1000ml
Absolute uncertainty (V) 1.88ml 5ml        6.88ml
Relative uncertainty (V) 6.27*10-3 7.14*10-3       6.88*10-3

Fraction (= f) 0.3 0.7
Relative uncertainty (f) 1.32*10-2 1.40*10-2

Absolute uncertainty (f) 0.004 0.01

2.2.2 Asymmetric intervals for quantitative factors
For quantitative factors, the interval between the extreme levels is usually situated
symmetrically around the nominal one. For some factors the selection of an asymmetrical
interval can represent more reality. However, the probability or feasibility for the selection
of asymmetric intervals needs to be evaluated for each factor separately and this within the
context of a given robustness test.

Example. Suppose that a column temperature of 35°C is prescribed. Then it is not unlogical
to define as low level a temperature that represents room temperature (e.g. 20°C or 25°C)
since it is probable that the method in some cases (laboratories) will be executed at this
temperature, for instance because one does not have a column oven. To determine the high
level, the uncertainty in the column oven temperature multiplied with coefficient k still
could be used, giving for instance 40ºC.
It could be argued that examining the temperature in an interval between 20 and 40ºC is not
a small perturbation, as the definitions for robustness require. However the idea of
robustness testing is that the factors are examined for changes that occur in practice when a
method is transferred. If it can be excluded that, after transfer of the method from the
laboratory where it is developed to those where it will be used, a method prescribed at 35ºC
will be executed at room temperature then the above given temperature interval could be
replaced by a symmetric one, for instance, 30-40ºC determined according to the rules of
Section 2.2.1.

2.2.3 Qualitative factors
For qualitative factors, the obtained results are not representative for the whole population
of the factor to which the selected levels belong but only allow an immediate comparison
between the two discrete levels selected.

Example. Inclusion of only two columns in a robustness study does not allow to draw
conclusions about the population of columns, i.e. about the robustness of the method on the
particular type of columns (e.g. different batches), since it is far from evident that the
selected columns represent extreme levels for the whole population. Only conclusions about
the robustness of the method on the two examined columns can be drawn and no
extrapolation to whatever other column can be made (see Section 8).
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3. Selection of the experimental designs
The factors are examined in an experimental design, which is selected as a function of the
number of factors to investigate. All designs applied are so-called two-level screening
designs which allow to screen a relatively large number of factors in a relatively small
number of experiments. The designs applied are fractional factorial [22-24] or Plackett-
Burman designs [24,25]. In a robustness test one is only concerned about the main effects of
factors (Remark).

Remark. In Plackett-Burman designs, two-factor interaction effects, among higher-order
interaction effects, are confounded with the main effects [24]. Confounding between effects
means that from a given design these effects cannot be estimated separately. The two-factor
interactions occurring in a robustness test can however be considered negligible [26].

Therefore the Plackett-Burman designs are included in this guideline. For an inexperienced
experimental design user, Plackett-Burman designs are easier to construct than fractional
factorial designs. The latter are however also given, for the sake of completeness (see
Selection of a fractional factorial design).
For a given number of factors, both within the Plackett-Burman and the fractional factorial
designs, two options are presented. The first option consists of using minimal designs, i.e.
the designs with the absolute minimal number of experiments for a number of factors, while
the second option allows a more extensive statistical interpretation of the effects. The
recommended Plackett-Burman designs are described in Table 2. The smallest number of
factors to be examined in an experimental design was considered to be three. For statistical
reasons concerning effect interpretation, designs with less than eight experiments are not
used, while those with more than 24 experiments are considered unpractical. The designs
are constructed as follows. The first line for the designs with N= 8-24 as described by
Plackett and Burman [25] is given below:

N=8 + + + − + − −

N=12 + + − + + + − − − + −

N=16 + + + + − + − + + − − + − − −

N=20 + + − − + + + + − + − + − − − − + + −

N=24 + + + + + − + − + + − − + + − − + − + − − − −

with N being the number of experiments and (+) and (-) the levels of the factors.
An example of a Plackett-Burman design for N = 12 is shown in Table 3. The first row in
the design is copied from the list above. The following N-2 rows (in the example, 10) are
obtained by a cyclical permutation of one position (i.e. shifting the line by one position to
the right) compared to the previous row. This means that the sign of the first factor (A) in
the second row is equal to that of the last factor (K) in the first row. The signs of the
following N-2 factors in the second row are equal to those of the first N-2 factors of the first
row. The third row is derived from the second one in an analogous way. This procedure is
repeated N-2 times until all but one line is formed. The last (Nth) row consists only of
minus signs.
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A Plackett-Burman design with N experiments can examine up to N-1 factors. After
determination of the number of real factors to be examined, the remaining columns in the
design are defined as dummy factors. A dummy factor is an imaginary factor for which the
change from one level to the other has no physical meaning.
In the minimal designs (Table 2a) the significance of effects is determined based on the
distribution of the factor effects themselves (see Section 6.2.2.3), while in the other designs
(Table 2b) the standard error on the effects is estimated from dummy factor effects (see
Section 6.2.2.2) [26,27]. The latter designs are therefore not always those with the smallest
number of experiments possible for a given number of factors, because a minimal number of
degrees of freedom to estimate the experimental error was taken into account, i.e. some
columns are needed for dummy factors. The Plackett-Burman designs in Table 2b are
chosen so that at least three dummy factors are included.
For complex methods, e.g. with an extensive sample pretreatment and/or a post-column
derivatisation, it might be necessary to examine a large number of factors and a relatively
large design is required which becomes tedious to perform. In such cases it may be more
practical to split the factors in two sets and evaluate them in two smaller designs that are
easier to execute. For instance, the factors of the derivatisation procedure are examined in
one design and those related to the analytical technique in a second. The most commonly
used designs consist of eight to sixteen experiments.

Selection of a fractional factorial design

For the selection of a fractional factorial design also two possibilities are provided, the
minimal designs and those that take into account requirements for statistical interpretation
from two-factor interactions. The designs proposed are described in Table 4. For more
detailed background information about the generation of the different designs used we refer
to Refs. [22-24]. Table 4a shows the minimal fractional factorial designs for a given number
of factors. Some designs can be expanded to a design with similar characteristics as those
described in Table 4b. This expansion possibility allows to execute a smaller fraction, and
then, after a first evaluation of the effects, to perform another fraction of the full factorial,
for which the combination with the previously performed experiments leads to a design with
characteristics analogous to those given in Table 4b (see below) [28]. No expansion design
was given for the minimal designs with 16 experiments since a total of 32 experiments is
considered not feasible any more. The generators are not proposed when no expansion is
foreseen and when it is not possible anymore to create a design with resolution IV [22,24].
The designs from Table 4b have the following characteristics: (i) the two-factor interactions
[22,23] are not confounded with the main effects, i.e. the design resolution is at least IV; and
(ii) at least three two-factor interaction effects can be estimated. The designs described in
Table 4b are those with the lowest number of experiments that still fulfil these requirements.
Designs with more than eight factors and fulfilling the above requirements are not given
because they require at least 32 experiments.  The two-factor interaction effects that can be
estimated from the fractional factorial designs of Table 4b, are used to estimate the
experimental error on the effects in these latter designs (see Section 6.2.2.2).

4 Experimental work
4.1 Execution of trials
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Aliquots of the same test sample and standard(s) are examined at the different experimental
conditions. In case there is a large range of concentrations to be determined (factor 100 or
more) several concentrations could be examined.
The design experiments are preferably performed in a random sequence. For practical
reasons experiments may be blocked (sorted) by one or more factors. This means that for the
blocked factor first all experiments where it is at one level are performed and afterwards
those at the other. Within the blocks the experiments are randomised. Even though blocking
is often used this way of working can contain some pitfalls. Indeed, if drift (time effect)
occurs the estimated effect(s) of the blocked factor(s) will be affected by the drift
[24,29,30]. If blocking is performed, at least a minimal check for drift is recommended.
With drift is meant that a response measured at constant conditions (e.g. nominal ones) is
changing (increasing or decreasing) as a function of time.
Blocking by external factors not tested in the design such as, for instance, days is also
possible. When a design cannot be performed within one day, it can be executed in blocks on
different days. This kind of blocking can also cause a blocking effect which is confounded
with one or more effects estimated for the design factors. Which effects are confounded in
that case depend on the sequence the design experiments are performed [30].

4.2 Minimising the influence of uncontrolled factors
A method can be subject to unavoidable drift. For instance, all HPLC columns are ageing
and as a consequence some responses drift as a function of time. A robustness test on
methods with drifting responses is still useful since it will indicate whether or not other
factors affect the response. However, some of the estimated factor effects are corrupted
when they are calculated from the measured data without taking some precautions, such as
(i) correcting for the drift using replicated (nominal) experiments, (ii) confounding the time
effects (due to the drift of the response) with dummy variables effects, or (iii) confounding
the time effects with non-significant interactions in fractional factorial designs.

4.2.1 Using replicated experiments
A number of additional experiments, usually at nominal levels, can be added to the
experimental design experiments to complete the experimental set-up. These replicate
experiments are performed before, at regular time intervals between, and after the
robustness test experiments of the Plackett-Burman design. The simplest possibility is to
carry out two replicate experiments, one before and one after the design experiments. These
experiments allow (i) to check if the method performs well at the beginning and at the end
of the experiments, (ii) to obtain a first estimate for drift, (iii) to correct the measured
results for possible time effects, such as drift, and occasionally (iv) to normalise the effects
(see Section 6.1).

4.2.2 Using dummy variables
Instead of correcting for time effects, one can minimise their influence on the factor effect
estimates by executing the design experiments in a well-defined sequence. Such anti-drift
sequences have been defined for full factorial designs [29] and for some fractional factorial
ones [30]. When the design experiments are executed in this sequence the factor effects are
not or minimally influenced by the drift (at least when the drift is linear) because then the
time effect is confounded with the interaction effects [30].
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In analogy with the fractional factorial designs one could minimise in Plackett-Burman
designs the influence of an occasional time effect on the real factor effects by selecting an
experimental sequence that confounds the time effect maximally with the dummy factors. In
practice, one will construct a Plackett-Burman design and evaluate for that design which
columns are most affected by drift. These can be determined by awarding, for each column
(factor), to the experiment number its corresponding sign, being (+) or (-), and summing the
resulting values. For instance, in Table 3, for factor A, experiment one gets value +1;
experiment two, value -2; experiment three gets +3 and so on (-4, -5, -6, +7, +8, +9, -10,
+11, -12). The resulting sum for factor A is zero.
The columns with the highest absolute results are affected most by drift and to these
columns the dummy factors will be attributed (Example).

Example. For the design shown in Table 3 the values 0, -10, 2, -8, -18, -28, -16, -4, 8, -2
and 10 are obtained for columns A, B, C, D, E, F, G, H, I, J and K respectively. One will
award a first dummy factor to column F, a second to column E, a third to column G, and so
on.

5. Determining responses
5.1 Responses measured in a robustness test
From the experiments performed, a number of responses can be determined. For
chromatographic methods, responses describing a quantity such as the content of main
substance and by-products, and/or peak areas or peak heights are the more evident. The
evaluation of the content can hide certain effects: indeed, when a factor has a similar effect
on the peak area/height of the sample and standard(s), this effect will not be seen anymore in
the content. Therefore, the evaluation of both peak areas/heights and contents can indicate
different factors as important and is to be preferred. An alternative for the study of
areas/heights is to calculate the content from the area/height of the sample measured for the
different design experiments relative to the result(s) of the standard(s) measured at nominal
conditions.
For a separation method one should also consider one or more parameters describing the
quality of the separation, such as, for example, the resolution or the relative retention. The
evaluation of these separation parameters can also lead to system suitability test (SST) limits
as required by the ICH. When determining SST-limits, other responses such as capacity
factors or retention times, asymmetry factors and number of theoretical plates can also be
studied (see Section 8).

5.2 Corrected response results
If one checked for drift, e.g. by replicate nominal experiments, corrected response results
can be calculated from the measured results. The corrected design results are calculated as

yi,corrected = 







+

+−+
−+

1
)1( ,*,*

,, p
yiyip

yy afternombeforenom
beginnommeasuredi (1)

where i = 1, 2, ..., p and p is the number of design experiments between two consecutive
nominal experiments, yi,corrected is a corrected design result, yi,measured the corresponding
measured design result, ynom,begin the nominal result at the beginning of the experiments
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(before design), ynom,before and ynom,after the nominal results measured before and after the
design result for which one is correcting. Equation (1) is only correct if the hypothesis can
be accepted that the experiments were performed equidistant in time.

6. Analysis of the results
6.1 Calculation of effects
Effects can be calculated both from the measured and the corrected response results. The
two effects estimated for a factor are similar for factors not affected by drift and different
from those that are.
For each factor its effect is calculated according to the equation

EX = 
/2
(+)∑

Ν
Y

 - 
/2
(−)∑

Ν
Y

   (2)

where X can represent (i) real factors A, B, C, ...; or (ii) the dummy factors from Plackett-
Burman designs or the two-factor interactions from fractional factorial designs, EX is the
effect of X on response Y ; ΣY(+) and ΣY(-) are the sums of the (corrected) responses where
X is at the extreme levels (+) and (-), respectively, and N is the number of experiments of the
design.
The effects can also be normalised relative to the average nominal result (Y ), in case the
response is not drifting, or to the nominal result measured before the design experiments,
when the response is drifting [26]. Usually normalised effects, much more than the regular
effect estimates, allow the user of the method to consider the influence of a factor as
important, even without statistical interpretation.

%100(%) ⋅=
Y
EE X

X
(3)

6.2 Interpretation of effects
If an estimate of the experimental error of the effects is available with a proper number of
degrees of freedom, it is recommended to perform a statistical test [13,15,24,26,31].
Graphical approaches can also be used to obtain an acceptable interpretation. However, we
recommend using both, if possible.

6.2.1 Graphical interpretation
The graphical identification of important effects is usually applied with a normal probability
plot [22-24,28] or a half-normal plot [24,31]. Non-significant effects are normally
distributed around zero. Both in a normal probability and a half-normal plot these non-
significant effects tend to fall on a straight line through zero, while significant effects
deviate from it. An example of a normal probability plot and of a half-normal plot is shown
in Figure 2. The normal probability and the half-normal plots lead to similar conclusions.
Only the construction of the half-normal plot is described below.
To create the half-normal plot, the n effects are ranked according to increasing absolute
effect size. The rth value of that sequence is plotted against a scale defined by partitioning
the right half of the normal distribution in n parts of equal area, and by taking the median of
the rth slice. This value is called the rankit. In Table 5 the rankits are given for the most
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frequently executed Plackett-Burman designs. The effects that are derived from a robustness
test design are then plotted against the corresponding rankits. Several commercial statistical
software packages allow the construction of normal probability or of half-normal plots.

6.2.2 Statistical interpretations
The statistical interpretation provides the user a numerical limit value that can be plotted on
the graphical representation (e.g. the half-normal plot) and that allows to define, in a less
subjective way than the visual one, what is significant and what is not. This limit value to
identify statistically significant effects is usually derived from the t-test statistic
[2,13,16,24,31,32].

e

X
SE
E

t
)(

= ⇔ tcritical  (4)

with (SE)e, the standard error of an effect, which represents the experimental variability
within the design. For robustness experiments, this (SE)e can be estimated in different ways
(see below). The statistic given in equation (4) can be rewritten as

EX  ⇔ Ecritical = tcritical . (SE)e (5)

or normalised relative to the response value (Yn)

%EX  ⇔ %Ecritical = 
n

critical

Y
E %100. (6)

The critical effect (Ecritical) is usually calculated at a significance level α = 0.05
(occasionally 0.01 or 0.1). An effect is considered significant at a given α level if EX  >
Ecritical.
For the statistical interpretation of effects different ways of estimating the error of an effect
are described [24,31]. Three approaches are retained in this guideline since they were found
to give acceptable and physically relevant results [24,26,27,31,33-35].
1. An intermediate precision estimate of the measurement error is available (Section

6.2.2.1).
2. An error estimate on an effect is obtained from the dummy factors or from two-factor (or

multiple-factor) interactions (Section 6.2.2.2).
3. The error of an effect is estimated from the distribution of the effects themselves

(Section 6.2.2.3).

6.2.2.1 Estimation of error from intermediate precision estimates
The standard error on an estimated effect is calculated according to the equation for the
standard error on a difference of means:

b
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a
a

n
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n
sSE

22
+= (7)
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where 2
as  and 2

bs  estimate the variances of the two sets of measurements and na and nb are
the numbers of measurements of those sets. The standard error of an effect thus becomes

N
4s

N/2
s

N/2
s)SE(

222
e =+= (8)

since 2
as  and 2

bs  are estimated by the same variance, s2, and na = nb = N/2.
The variance s2 can be determined from replicated experiments at nominal levels or from
duplicated design experiments. The tcritical is a tabulated t-value at R degrees of freedom
where R is the number of degrees of freedom with which s2 is estimated. When using
replicated nominal experiments R = n-1 with n being the number of replicated experiments,

while for duplicated design experiments s2 = 
N

d
N

i
i

2
1

2∑
=  and R = N, with di being the differences

between the duplicated experiments.
With this criterion, only estimates of s2 obtained under intermediate precision conditions
lead to relevant conclusions [27]. With intermediate precision conditions is meant here that
at least the factor time was varied, i.e. the measurements were performed on different days.
Thus, this criterion can only be used if intermediate precision estimates are available which
often is not yet the case when a robustness test is performed. Secondly, it is not always
practically feasible to duplicate design experiments under intermediate precision conditions
given the increased workload.

6.2.2.2 Estimation of error from dummy effects or from two-factor interaction effects
An estimate of (SE)e can also be obtained from dummy or interaction effects, i.e. effects that
are considered negligible. The following equation is used

error

2
error

e n
E(SE) ∑=     (9)

where ∑ 2
errorE is the sum of squares of the nerror dummy or interaction effects.  The (SE)e is

then used in the equation (4) or (5) to perform the statistical test.
One should be aware of the low power of a statistical test with few degrees of freedom. If
dummy factors are used, a design which contains at least three dummy factors should be
selected (Table 2). The minimal designs described above have no, or at least not a sufficient,
number of degrees of freedom to test the effects on their significance using the dummy
effects. As a consequence the power of the t-test to detect any significance is low. In these
cases the algorithm of Dong is to be preferred (see Section 6.2.2.3).
One should also take into account the fact that in some situations the dummy effects are
potentially affected by the drift (see Section 4.2.2).  These should be eliminated from the
estimation of (SE)e, since they are not necessarily representing non-significant effects
anymore.

6.2.2.3 Estimation of error from the distribution of effects (algorithm of Dong)
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For small designs the algorithm of Dong [36] is a suitable tool to identify significant effects.
This algorithm can be used for all screening designs of Tables 2 and 4, including the
minimal designs. Other algorithms were also proposed [37-40] but are not considered here.
In the approach of Dong, an initial estimate of the error on an effect is obtained in the
following way.

||5.1 io E
i

medians ⋅=  (10)

where Ei is the value of effect i.
From s0, a final estimation of the standard error (s1) is derived as

s1 = ∑− 21
iEm  for all |Ei| ≤ 2.5s0  (11)

where m is the number of absolute effects smaller than 2.5s0.

Notes. A) The value 1.5 in Eq. (10) is appropriate for a random variable that follows a
normal distribution N(0, σ2). When the Ei are independent realisations of this distribution
the median of the absolute effects |E| is namely about 0.675σ [39].
B) By using s1 instead of s0, one avoids overestimating the error. The constraint of
eliminating effects exceeding the 2.5s0 limit follows from the fact that P(|E|>2.5σ) ≈0.01.

Next, the s1 value is used to calculate a so-called margin of error (ME) which is a critical
effect.

ME t sdf= ⋅−( / , )1 2 1α  (12)

where 1-α/2=0.975 and df = m.

The ME is statistically a valid criterion for significance testing when only one effect has to
be tested. When multiple effects are tested the chance for non-significant effects that exceed
the ME  increases. To compensate for these events, statistically, the significance level has to
be adjusted and a second limit is defined, the simultaneous margin of error (SME).

SME t sdf= ⋅−( / , )*1 2 1α            (13)

where α α* ( / )( )= − −1 1 1 m , the Sidak adjusted significance level [41].
The ME and SME are critical effects similar to the definition of equation (5). According to
the literature, an effect that exceeds the ME, but is below the SME, is called to be possibly
significant and an effect that is above the SME, is considered to be significant [36].
However, in practice, the ME limit is recommended to be used as the decision criterion for
all effects calculated from the robustness test, even though there is an increased chance for
false positive decisions. Indeed, using the SME reduces the probability for such false
positives (α-error), i.e. the indication of a non-significant effect as significant, but on the
other hand it largely increases the number of false negatives (β-error), i.e. the number of
significant effects that are considered to be non-significant. This latter means that a method
will be considered robust while in fact it is not. Therefore, it can be recommended not to use
the SME limit in robustness testing.
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Note. If the number of significant effects is large, the algorithm of Dong is iterated, i.e. s0 is
replaced by s1 and a new s1* is calculated. For the robustness strategy as proposed in this
guideline, iteration will not be necessary because it is assumed that significant effects are
sparse [31]. Therefore, we recommend to apply Dong’s method in its most simple form for
interpretation of the normal probability and half-normal plots.
The assumption of effect sparsity (i.e. that less than 50% of the effects are significant) can
be a disadvantage. This assumption is usually valid for a response such as the content
determination, but it is not necessarily the case for responses describing the separation or the
quality of a chromatogram such as for instance resolution, capacity factor, asymmetry factor
(see Section 8). If problems with the algorithm of Dong are expected, one should prefer the
approach that uses dummy variables for statistical interpretation, although this increases the
design size.

Example of the application of Dong’s algorithm
A case study is described to demonstrate the principle of the half-normal plot and the
algorithm of Dong. In this study a robustness test is applied to the determination of
phenylbutazone with HPLC [15]. In the robustness test a N=8 Plackett-Burman design for 7
factors was used. There are no dummy effects available to estimate the (SE)e. A graphical
approach in combination with the algorithm of Dong is used to identify significant effects.
The effects on the content of phenylbutazone, resulting from the Plackett-Burman design,
are reported in Table 6.
The rankits of Table 5 (N=8) are used to build the half-normal plot presented in Figure 3.
The median of the effects for this example is 0.860. From equations (10) and (11) the
following results are derived:

29.1860.05.10 =⋅=s  and

830.0)035.1970.0860.0860.0795.0075.0(6 2222221
1 =+++++⋅= −s

In the calculation of s1 the effect of  factor C (age of the reference solution) is left out,
because this effect is larger than 2 5 0. ⋅ s . Further, equations (12) and (13) are applied to
define the ME and SME limits.

03.2830.045.2830.0)6,975.0( =⋅=⋅= tME

For the SME limit the significance level α is adapted using the adjustment as defined by
Sidak [41], which results in a corrected significance level equal to α=0.0085, i.e., (1-(1-
0.05)1/6).

30.3830.098.3830.0)6,996.0( =⋅=⋅= tSME

In Figure 3 the half-normal plot is presented, with the ME and SME limits included. It
indicates that all effects are more or less equal to random error, except for the effect of
factor C. This factor has a significant effect when the factor levels are varied in the interval
as specified in the robustness test. It is evident, for this example, that factor C deviates from
the straight line. However, the interpretation is not always so obvious. The algorithm of
Dong or one of the other statistical interpretation methods are then helpful tools.
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6.3 Estimating non-significance intervals for significant factors
When a factor has a significant effect on a response, one can wonder in which interval the
factor levels should be controlled to eliminate the effect. These levels can be estimated as
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where X(0), X(1) and X(-1) are the real values of factor X for the levels (0), (1) and (-1)
respectively.

Example. Suppose the factor pH of a buffer was examined in the interval 6.5 – 7.1 with the
nominal pH being 6.8, and its influence on the resolution was evaluated. A significant effect
(EX = 0.427) was found with Ecritical = 0.370. Non-significant factors levels for pH are then

estimated as 



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 −
+
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427.0*2
370.0*5.61.7

8.6,
427.0*2

370.0*5.61.7
8.6  = [6.54; 7.06]. When the pH is

controlled within this interval (e.g. within 6.6 – 7.0) no significant effect of the pH on the
resolution will be found anymore.

It is evident (i) that such levels can be calculated only for quantitative factors, (ii) that the
extreme levels must be symmetrically situated around the nominal one, and (iii) that a linear
behaviour of the response as a function of the factor levels is assumed.

7. The derivation of system suitability limits from robustness test results
A system suitability test (SST) is an integral part of many analytical methods [7]. It
ascertains the suitability and effectiveness of the operating system [9]. The SST-limits
usually are established based on the experimental results obtained during the optimisation
and validation of a method and on the experience of the analyst. However the ICH
guidelines state that “one consequence of the evaluation of robustness should be that a
series of system suitability parameters (e.g. resolution tests) is established to ensure that the
validity of the analytical procedure is maintained whenever used”. Therefore we propose to
use the results of the worst-case situations to define the SST-limits, e.g. for resolution [42].
Notice that we recommend to determine the SST-limits only when the method can be
considered robust for its quantitative assay. In that case it can be expected that in none of the
points of the experimental domain, including those at which certain (system suitability)
responses have their worst result, there would be a problem with the quantitative response.
Of course, the hypothesis that the worst case conditions do not affect the quantitative results
can easily be verified in practice. This is further discussed in Section 8.
Beside the recommendation of the ICH guidelines, there are also practical reasons for
defining SST-limits based on the results of a robustness test. From experience it was seen
that the SST limits selected independently from the results of a robustness test, frequently
are violated when the method is transferred. This is due to the fact that they are chosen too
strictly and relatively arbitrarily based on the experience of the analyst in the optimisation
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laboratory. On the other hand, it is neither considered desirable to choose as SST-limit the
most extreme value that still allows a quantitative determination. For instance, when the
operational conditions after method development give a resolution of about six, a resolution
of two is not considered acceptable, even if quantification still seems possible. It is namely
important to maintain the method at all times around the conditions at which it is optimised
and validated. Therefore it is considered preferable to derive the system suitability limits
from the robustness test, since there the most extreme variations in the factors that still are
probable under acceptable conditions, are examined.
These worst-case conditions are predicted from the calculated effects. The worst-case
situation is then the factor combination giving the lowest resolution. For responses like the
capacity factor it is the one causing the smallest result, while for the tailing factor it is
usually the situation resulting in the highest value. To define the worst-case conditions only
the statistically significant factors (at α=0.05) and the ones that come close to it (significant
at α=0.1) are considered. The factors not significant at α=0.1 are considered negligible and
their effects are considered to originate only from experimental error. As the experimental
designs proposed in this guideline are saturated two-level designs, only linear effects for the
maintained factors are considered in the prediction of the worst-case situation which is
acceptable since in robustness testing only a restricted domain of the response surface is
considered. The factor level combination for which the equation

Y = b0 + 
2

1FE
*F1 + 

2
2FE

*F2 + … + 
2

kFE
*Fk (15)

predicts the worst result is derived. In Eq. (15) Y represents the response, b0 the average
design result, iFE  the effect of the factor considered for the worst-case experiment and Fi

the level of this factor (–1 or +1). Non-important factors are kept at nominal value (Fk = 0).
An example of calculation is given in Section 8.
The SST-limit can experimentally be determined from the result of one or several
experiments performed at these conditions, or it can be predicted. When the experiment is
replicated the SST-limit can be defined as the upper or lower limit from the one-sided 95%
confidence interval [13] around the worst case mean. For resolution and capacity factor, for
instance, the lower limit would be chosen, while for the tailing factor it would be the upper

one. The confidence interval is defined as 
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If no significant effects were occurring for a response then its SST limit can be determined
analogously to the above situation but the measurements will be executed at nominal
conditions.
A less strict and easier alternative is to define the (average) worst-case result ( )caseWorstY −
as the SST-limit.
Finally, one could estimate the SST-limit from the theoretical model of Eq. (15) without
performing additional experiments.

8. Example of a robustness test performed according to this guideline
The case study described concerns the robustness testing of the High Performance Liquid
Chromatographic (HPLC) method for the identification and assay of an active substance
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(main compound, MC) and for the detection of two related compounds (RC1 and RC2) in
tablets (extracted from [42]).

Nominal conditions
The analysis method uses an external standard without tablet placebo. The solutions used in
this robustness test are (i) a standard solution containing 125 mgL-1 of RC1 and of RC2 in
methanol, (ii) a reference solution containing per 100mL, 25.0 mg of MC reference material
and 1.0mL of ‘standard solution i)’ in a mixture methanol/0.25 % ammonium acetate in
water (9:1, V/V), (iii) a sample solution containing per 100mL, 25.0 mg of MC reference
material, 1.0 ml of the ‘standard solution i)’ and 10 placebo formulation tablets in a mixture
methanol/0.25 % ammonium acetate in water (9:1, V/V), and (iv) a blank solution :
methanol/0.25 % ammonium acetate in water (9:1, V/V). The mixtures to prepare solutions
(ii) and (iii) are mechanically shaken for 30 minutes, diluted to volume and filtered through
a 0.45 µm chemical resistant Acrodisc-filter. Notice that the sample solution represents a
tablet simulation.
Chromatographic conditions : a 10 cm × 4.6 mm ID column, packed with Hypersil BDS-
C18, 3 µm particle size is prescribed. The substances are eluted in a gradient elution mode
at a flow rate of 1.5 ml/min and at ambient temperature. The solvent gradient used is shown
in Table 7. Detection of the eluted substances is done spectrophotometrically at 265 nm. The
injection volume is 10 µl.

Selection of factors and levels
The factors investigated in the robustness evaluation of the HPLC method for identification
and assay of MC and its related compounds in tablet simulations are summarised in Table 8.
Both quantitative and qualitative (column manufacturer) factors are examined in the
robustness test. For the qualitative factor the nominal column is also used as one of the
“extreme” levels since it is more logical to compare the nominal column with another one,
than to compare two columns different from the nominal one with each other. Notice that
inclusion of only two columns in the robustness study does not allow to draw any
conclusion about the total population of columns, i.e. about the robustness of the method on
the particular type of columns to which the two selected ones belong. Only conclusions
about the robustness of the method on the two examined columns can be drawn.
The indication, in the operating procedure, of the column temperature as ambient could be
insufficient if the temperature is an important factor since ambient temperature can vary
largely from one laboratory to another and it has to be standardised in that case.
For the selection of the levels the uncertainties in the nominal factor levels multiplied with a
constant (k), as specified in Section 2.2.1, are used. When the percentage organic modifier
was changed in factors (5) and (6) of Table 8, water (solvent C) was used as adjusting
compound.

Selection of the experimental design
The eight factors that were selected from the operating procedure were examined in a
Plackett-Burman design for 11 factors (N = 12). Therefore three dummy factor columns
have to be included. This was done randomly. The selected design is shown in Table 9.
Tables 3 and 9, at first sight, seem to be different. This is however not the case. Table 3 was
constructed, as described in Section 3, starting from the first line given by Plackett and
Burman. The design of Table 9 is the one generated by a statistical software package. With
this we would like to indicate that when someone is using its own available software to
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select or create a design, the sequences of rows and columns are not necessarily the ones
given in this guideline, though the final designs are equivalent.

Execution of the trials
No additional nominal experiments were added to the experimental set-up. For each of the
12 experimental design runs, three injections are performed (i) a blank injection, (ii) an
injection of the reference solution, and (iii) an injection of the sample solution. With this
set-up it is assumed that in practice the sample and standard, used to determine the sample
content are analysed under identical experimental conditions (see Section 5).

Responses determined
The responses determined in this robustness test are (i) the percent recoveries of MC, RC1
and RC2, (ii) the resolution (Rs) of the critical peak pair, which is MC and RC1, (iii) the
capacity factor (k�) of MC, (iv) the tailing or asymmetry factor (Asf) of MC, and (v) the
analysis time given as the retention time (tR) of the last eluting substance RC2. Table 10
shows the experimentally obtained design values for the responses that are studied.

Calculation of effects
The effects of the different factors on the considered responses are shown in Table 11a.
Since in this case study no additional nominal experiments are performed no normalised
effect values are calculated.

Graphical interpretation of effects
Normal probability and half-normal plots are drawn with the effects estimated for the
different responses. They are shown in Fig. 4. From these plots it can be observed that the
interpretation of these plots is not always straightforward and it can be recommended to
combine them with a statistical interpretation. This latter interpretation allows to draw the
critical effects on the plots, as was for instance done in Figure 3. In Fig. 4 no critical effects
were drawn on the plots since actually they belong to the statistical interpretation of the
effects.
In both types of plots, the visual identification of important effects becomes less evident as
the total number of plotted effects decreases (i.e. for smaller designs). It is not always
obvious to draw the line formed by the non-significant effects. The graphical interpretation
becomes more interesting when the number of estimated effects is large and only a limited
number is expected to be significant. The plots also can be used to indicate suspect dummy
factor effects which are relatively high and that are possible outliers to the population of
non-significant effects (cf. EDum3 on %RC2) and therefore occasionally can be eliminated
from the statistical interpretation (cf. further).

Statistical interpretation of effects
Two statistical interpretations were performed on this data set, (i) the one in which the
experimental error is estimated from the dummy effects (Section 6.2.2.2), and (ii) the one
which uses Dong’s criterion (Section 6.2.2.3). The criterion based on an intermediate
precision estimate (Section 6.2.2.1) is not used since that kind of information was not
available at the moment the robustness test was performed. Notice that in general only one
statistical interpretation will be applied. Here two are given for comparison. The critical
effects obtained with both interpretation methods are shown in Table 11b. The significance
of the factor effects according to both interpretation methods is shown in Table 12. It can be
observed that the quantitative results of the method, the percent recovery of the substances,
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are not considered significantly affected by one of the examined factors according to the
interpretation using the dummy factor effects to estimate the experimental error.
When Dong’s criterion is applied some factors were found to be significant for the %RC2,
however, only at α=0.1 level. This difference can be explained by the fact that the effect of
one dummy (Dum3) is relatively high which affects the critical effect estimated from the
dummy effects, while this is not the case for the limit from Dong’s criterion. This
demonstrates that Dong’s criterion is a more robust estimator of the experimental error,
when relatively large dummy factor effects occur.
Based on the graphical methods (Fig. 4) one also could have decided to remove Dum3 from
the statistical interpretation since it seems to be an outlier to the population of non-
significant effects. After removal of Dum3 from the estimation of (SE)e the critical effects
become comparable to those estimated with Dong’s criterion (see Table 11b).

Evaluation of the robustness of the method
The assay of MC and its related compounds can be considered robust because (i) none of the
factors studied has a significant effect (at α=0.05 level) on the determination of the recovery
of the main and related compounds when the dummy effects are used to estimate the
experimental error, (ii) using Dong’s criterion none of the factor effects is significant neither
at α=0.05, (iii) the most extreme results obtained in the design (Table 10), are within the
acceptance limits for the recovery (95-105%), that was handled in this case study and (iv)
the percent relative standard deviations of the design results are also considered acceptable
for this method (1.2%, 1.5% and 1.6% for MC, RC1 and RC2 respectively).
The fact that for the responses such as resolution, capacity factor, retention time or
asymmetry factor several significant effects are found does not mean that the method should
be considered as non-robust or that the method was not well optimised. When the
quantitative aspect of the method is not influenced by the factors examined the method can
be considered robust. The standardisation one would have to make to prevent factors from
affecting responses such as for instance the capacity factor, would be so strict that execution
of the method would not be feasible anymore and moreover, would go beyond the original
intention of the robustness test.

Derivation of system suitability limits from robustness test results
The worst-case factor-level combinations for the responses for which SST limits were
desired are shown in Table 13a. The worst-case situation for resolution is the factor
combination giving the lowest resolution, for the capacity factor it is the one causing the
smallest capacity factor, while for the tailing factor it is the factor combination resulting in
the highest value. These worst-case conditions were predicted from the significances
observed with the statistical interpretation using the dummy effects (Table 12a) (Example).

Example. Consider the response resolution between MC and RC1. Significant effects at
α=0.10 are observed for the factors pH, column, temperature %B end and buffer conc. (see
Table 12a). To define the worst-case conditions the non-significant factors %B begin, flow
and wavelength are kept at nominal level as described in Section 7. To define the worst-case
levels for the significant factors the estimated effects are considered (Table 11a). For pH the
effect was estimated to be 0.427. This means that level (+1) gives a higher response than
level (-1) as can be derived from the equation for effects (Eq. 2), and that the worst
resolution is obtained at level (-1). For the factors column, temperature, %B end and buffer
concentration the worst-case levels are defined analogously as being (-1), (-1), (+1) and (-1)
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respectively. This combination of levels is the one given in Table 13a as the predicted
worst-case factor-level combination for Rs(MC-RC1).

The worst-case experiment for a given response was then carried out in three independent
replicates. The results and the system suitability limits derived from these experiments are
shown in Table 13b.
The results of the two other possibilities to define SST-limits, namely taking the average
worst-case result, or estimating them from the theoretical model of the effects, are also
shown. It can be observed that the SST-limits calculated from the theoretical model are the
least strict ones in the case study.

Remark
As mentioned in Section 7, if one doubts about the hypothesis that the quantitative results of
the method are not affected by the worst-case conditions of Table 13a, quantitative
experiments (to determine the recovery of the substances in this example) can be executed at
these conditions to confirm.

Acknowledgements

Y. Vander Heyden is a postdoctoral fellow of the Fund for Scientific Research (FWO) –
Vlaanderen.  B. Boulanger, P. Chiap, Ph. Hubert, G. Caliaro and J.M. Nivet (SFSTP
commission); P. Kiechle and C. Hartmann (Novartis, Basel, Switzerland) are thanked for
various discussions on the subject.



24

References
[1] ICH Harmonised Tripartite Guideline prepared within the Third International
Conference on Harmonisation of Technical Requirements for the Registration of
Pharmaceuticals for Human Use (ICH), Text on Validation of Analytical Procedures, 1994,
(http:/www.ifpma.org/ich1.html).

[2] Youden, E.H. Steiner; Statistical Manual of the Association of Official Analytical
Chemists; The Association of Official Analytical Chemists ed.; Arlington, 1975, p. 33-36,
70-71, 82-83.

[3] J.A. Van Leeuwen, L.M.C. Buydens, B.G.M. Vandeginste, G. Kateman, P.J.
Schoenmakers, M. Mulholland; RES, an expert system for the set-up and interpretation of a
ruggedness test in HPLC method validation. Part 1 : The ruggedness test in HPLC method
validation; Chemometrics and Intelligent Laboratory systems 10 (1991) 337-347.

[4] M. Mulholland; Ruggedness testing in analytical chemistry; TRAC, 7 (1988) 383-389.

[5] Y. Vander Heyden, F. Questier and D.L. Massart; Ruggedness testing of
chromatographic methods : selection of factors and levels; Journal of Pharmaceutical and
Biomedical Analysis 18 (1998) 43-56.

[6] F.J. van de Vaart et al.; Validation in Pharmaceutical and Biopharmaceutical Analysis;
Het Pharmaceutisch Weekblad 127 (1992) 1229-1235.

[7] ICH Harmonised Tripartite Guideline prepared within the Third International
Conference on Harmonisation of Technical Requirements for the Registration of
Pharmaceuticals for Human Use (ICH), Validation of Analytical Procedures : Methodology,
1996, 1-8  (http:/www.ifpma.org/ich1.html).

[8] J. Caporal-Gautier, J.M. Nivet, P. Algranti, M. Guilloteau, M. Histe, M. Lallier, J.J.
N'Guyen-Huu and R. Russotto; Guide de validation analytique, Rapport d'une commission
SFSTP, STP Pharma Pratiques, 2 (1992) 205-239.

[9] The United States Pharmacopeia, 23th edition, National Formulary 18, United States
Pharmacopeial Convention, 1995, Rockville, USA.

[10] Drugs Directorate Guidelines, Acceptable Methods; Health Protection Branch - Health
and Welfare Canada; 1992; 20-22.

[11] International Organisation for Standardisation (ISO); Accuracy (trueness and
precision) of measurement methods and results - Part 2 : Basic method for the
determination of repeatability and reproducibility of a standard measurement method;
International Standard ISO 5725-2:1994(E), First edition.

[12] International Organisation for Standardisation (ISO); Accuracy (trueness and precision)
of measurement methods and results - Part 3 : Intermediate measures of the precision of a
standard measurement method; International Standard ISO 5725-3:1994(E), First edition.



25

[13] D.L. Massart, B.G.M. Vandeginste, L.M.C. Buydens, S. De Jong, P.J. Lewi and J.
Smeyers-Verbeke; Handbook of Chemometrics and Qualimetrics: Part A, Elsevier,
Amsterdam, 1997.

[14] M. Mulholland, J. Waterhouse; Development and evaluation of an automated
procedure for the ruggedness testing of chromatographic conditions in high-performance
liquid chromatography; J. Chromatogr. 395 (1987) 539-551.

[15] H. Fabre, V. Meynier de Salinelles, G. Cassanas, B. Mandrou; Validation d'une
méthode de dosage par chromatography en phase liquide haute performance; Analusis 13
(1985) 117-123.

[16] J.C. Miller and J.N. Miller, Statistics for Analytical Chemistry, Ellis Horwood, New
York, (1993), 53-59.

[17] D. Dadgar, P.E. Burnett, M.G. Choc, K. Gallicano and J.W. Hooper; Application issues
in bioanalytical method validation, sample analysis and data reporting; Journal of
Pharmaceutical and Biomedical Analysis 13 (1995) 89-97.

[18] H. Fabre, Robustness testing in liquid chromatography and capillary electrophoresis,
Journal of Pharmaceutical and Biomedical Analysis 14 (1996) 1125-1132.

[19] D.A. Doornbos, A.K. Smilde, J.H. de Boer and C.A.A. Duineveld; Experimental
design, response surface methodology and multicriteria decision making in the
development of drug dosage forms, in E.J. Karjalainen (Ed.), Scientific Computing and
Automation (Europe), Elsevier, Amsterdam (1990), 85-95.

[20] European Pharmacopoeia 1997, 3rd edition, European Department for the Quality of
Medicines within the Council of Europe, Strasbourg, 1996.

[21] Eurachem, A focus for Analytical Chemistry in Europe; Quantifying Uncertainty in
Analytical Measurement, First Edition 1995.

[22] E. Morgan, Chemometrics : experimental design, Analytical Chemistry by Open
Learning, Wiley, Chichester, 1991, pp.118-188.

[23] G. Box, W. Hunter, J. Hunter, Statistics for Experimenters, an introduction to Design,
Data analysis and Model Building, Wiley, New York, 1978, pp. 306-418.

[24] Y. Vander Heyden, D.L. Massart; Review of the use of robustness and ruggedness in
Analytical Chemistry; in A. Smilde, J. de Boer and M. Hendriks (Eds.) Robustness of
analytical methods and pharmaceutical technological products, Elsevier, Amsterdam,
1996, pp. 79-147.

[25] R.L. Plackett, J.P. Burman, The design of optimum multifactorial experiments,
Biometrika 33 (1946), 305-325.

[26] Y. Vander Heyden, K. Luypaert, C. Hartmann and D.L. Massart; J. Hoogmartens; J. De
Beer; Ruggedness tests on the HPLC assay of the United States Pharmacopeia XXII for



26

tetracycline hydrochloride. A comparison of experimental designs and statistical
interpretations; Analytica Chimica Acta 312 (1995) 245-262.

[27] Y. Vander Heyden, C. Hartmann and D.L. Massart; L. Michel, P. Kiechle and F. Erni;
Ruggedness tests on an HPLC assay : comparison of tests at two and three levels by using
two-level Plackett-Burman designs; Analytica Chimica Acta 316 (1995) 15-26.

[28] Y. Vander Heyden, F. Questier and D.L. Massart, A ruggedness test strategy for
procedure related factors : experimental set-up and interpretation; Journal of
Pharmaceutical and Biomedical Analysis 17 (1998) 153-168.

[29] J.L. Goupy, Methods for experimental design, principles and applications for
physicists and chemists, Elsevier, Amsterdam, 1993, pp. 159-177, 421-427.

[30] Y. Vander Heyden, A. Bourgeois, D.L. Massart, Influence of the sequence of
experiments in a ruggedness test when drift occurs, Analytica Chimica Acta 347 (1997)
369-384.

[31] A. Nijhuis, H.C.M. van der Knaap, S. de Jong and B.G.M. Vandeginste, Strategy for
ruggedness tests in chromatographic method validation, Analytica Chimica Acta, 391 (1999)
187-202.

[32] K. Jones, Optimization of experimental data, International Laboratory 16, 9 (1986) 32-
45.

[33] Y. Vander Heyden and D.L. Massart; Y. Zhu and J. Hoogmartens; J. De Beer;
Ruggedness tests on the HPLC assay of the United States Pharmacopeia XXIII for
tetracycline hydrochloride : comparison of different columns in an interlaboratory approach;
Journal of Pharmaceutical and Biomedical Analysis 14 (1996) 1313-1326.

[34] Y. Vander Heyden, C. Hartmann and D.L. Massart; P. Nuyten, A.M. Hollands and P.
Schoenmakers; Ruggedness testing of a size exclusion chromatographic assay for low
molecular mass polymers; Journal of Chromatography A 756 (1996) 89-106.

[35] Y. Vander Heyden, G.M.R. Vandenbossche, C. De Muynck, K. Strobbe, P. Van Aerde,
J.P. Remon and D.L. Massart, Influence of process parameters on the viscosity of
Carbopol® 974P dispersions, Ph.D. thesis, personal communication.

[36] F. Dong, On the identification of active contrasts in unreplicated fractional factorials,
Statistica Sinica 3 (1993) 209-217.

 [37] C. Daniel, Use of half-normal plots in interpreting factorial two-level experiment,
Technometrics 1 (1959) 311-341.

[38] D.A. Zahn, An empirical study of the half-normal plot, Technometrics 17 (1975) 201-
211.

[39] R.V. Lenth, Quick and easy analysis of unreplicated factorials, Technometrics 31
(1989) 469-473.



27

[40] P.D. Haaland and M.A. O’Connel, Inference for effect-saturated fractional factorials,
Technometrics 37 (1995) 82-93.

[41] Z. Sidak, Rectangular confidence regions for the means of multivariate normal
distributions, Journal of the American Statistical Association 62 (1967) 626-633.

[42] Y. Vander Heyden, M. Jimidar, E. Hund, N. Niemeijer, R. Peeters, J. Smeyers-
Verbeke, D.L. Massart and J. Hoogmartens; Determination of system suitability limits with
a robustness test; Journal of Chromatography A, 845 (1999) 145-154.



28

Table 1
Potential factors to be examined in the robustness testing of some analytical methods. HPLC
= high performance liquid chromatography, TLC = thin layer chromatography and CE =
capillary electrophoresis.

Method Factors
1) HPLC    • pH of the mobile phase

   • Amount of the organic modifier
   • Buffer concentration, salt concentrations
      or ionic strength
   • Concentration of additives (ion pairing agents,
      competing amine)
   • Flow rate
   • Column temperature
   • For gradient elution :

− initial mobile phase composition
− final mobile phase composition
− slope of the gradient

   • Column factors :
− batch of stationary phase
− manufacturer
− age of the column

   • Detector factors :
− wavelength (UV or fluorimetric

detection)
− voltage (electrochemical detection)

   • Integration factors : sensitivity

2) Gas Chromatography (GC)    • Injection temperature
   • Column temperature
   • Detection temperature
   • For temperature program :

− initial temperature
− final temperature
− slope of the temperature gradient

   • Flow-rate of the gas
   • For flow-program :

− initial flow
− final flow
− slope of the flow gradient

   • Split-flow
   • Type of liner
   • Column factors :

− batch of stationary phase
− manufacturer
− age of the column
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Table 1 (continued)

Method Factors

3) TLC    • Eluent composition
   • pH of the mobile phase
   • Temperature
   • Development distance
   • Spot shape
   • Spot size
   • Batch of the plates
   • Volume of sample
   • Drying conditions (temperature, time)
   • Conditions of spot visualisation (spraying of
      reagent, UV detection, dipping into a reagent)

4) CE and related techniques    • Electrolyte concentration
   • Buffer pH
   • Concentration of additives (organic solvents, chiral
      selectors, surfactants)
   • Temperature
   • Applied voltage
   • Sample injection time
   • Sample concentration
   • Concentration of the liquids to rinse
   • Rinse times
   • Detector factors : wavelength (UV or fluorimetric
      detection)
   • Factors related to the capillary :

− batch
− manufacturer

   • Integration factors
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Table 2
Plackett-Burman designs applied in the guideline

(a) Minimal designs

No. of
factors Selected design

No. of dummy
factors

No. of experi-
ments (N)

3-7 Plackett-Burman design for 7 factors 4-0 8
8-11 Plackett-Burman design for 11 factors 3-0 12
12-15 Plackett-Burman design for 15 factors 3-0 16
16-19 Plackett-Burman design for 19 factors 3-0 20
20-23 Plackett-Burman design for 23 factors 3-0 24

(b) Designs for statistical interpretation of effects from dummy factors

No. of
factors Selected design

No. of dummy
factors

No. of experi-
ments (N)

3-4 Plackett-Burman design for 7 factors 4-3 8
5-8 Plackett-Burman design for 11 factors 6-3 12
9-12 Plackett-Burman design for 15 factors 6-3 16
13-16 Plackett-Burman design for 19 factors 6-3 20
17-20 Plackett-Burman design for 23 factors 6-3 24
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Table 3
Plackett-Burman design for 11 factors (N =12)

Exp. Factors Response
A B C D E F G H I J K

1 + + - + + + - - - + - y1

2 - + + - + + + - - - + y2

3 + - + + - + + + - - - y3

4 - + - + + - + + + - - y4

5 - - + - + + - + + + - y5

6 - - - + - + + - + + + y6

7 + - - - + - + + - + + y7

8 + + - - - + - + + - + y8

9 + + + - - - + - + + - y9

10 - + + + - - - + - + + y10

11 + - + + + - - - + - + y11

12 - - - - - - - - - - - y12
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Table 4
Fractional factorial designs applied in the guideline
Legend : ng = not given

(a) Minimal designs

No. of
factors

Selected design Generators Expansion
generators

No. of experi-
ments (N)

3 Full factorial : 23 - - 8
4 Half-fraction factorial : 24-1 D = ABC - 8

5 Quarter-fraction factorial : 25-2 D = AB
E = AC

D = -AB
E = -AC

8

6 Eighth-fraction factorial : 26-3 D = AB
E = AC
F = BC

D = -AB
E = -AC
F = -BC

8

7 Sixteenth-fraction factorial : 27-4 D = AB
E = AC
F = BC
G = ABC

D = -AB
E = -AC
F = -BC
G = ABC

8

8 Sixteenth-fraction factorial : 28-4 E = ABC,
F = BCD,
G = ABD
H = ACD

ng 16

9 1/32th fraction factorial : 29-5 ng ng 16
10 1/64th fraction factorial : 210-6 ng ng 16
11 1/128th fraction factorial : 211-7 ng ng 16
12 1/256th fraction factorial : 212-8 ng ng 16
13 1/512th fraction factorial : 213-9 ng ng 16
14 1/1024th fraction factorial : 214-10 ng ng 16
15 1/2048th fraction factorial : 215-11 ng ng 16



33

Table 4 (continued)

(b) Designs for statistical interpretation of effects from two-factor interactions

No. of
factors

Selected design Generators No. of experi-
ments (N)

3 Full factorial : 23 - 8
4 Half-fraction factorial : 24-1 D = ABC 8

5 Half-fraction factorial : 25-1 E = ABCD 16

6 Quater-fraction factorial : 26-2 E = ABC,
F = BCD

16

7 Eighth-fraction factorial : 27-3 E = ABC,
F = BCD,
G = ABD

16

8 Sixteenth-fraction factorial : 28-4 E = ABC,
F = BCD,
G = ABD
H = ACD

16
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Table 5
Rankits to draw a half-normal plot for the most frequently used screening designs
(effect “1” indicates the smallest effect)

Effect Design size
N=8 N=12 N=16

1 0.09 0.06 0.04
2 0.27 0.17 0.12
3 0.46 0.29 0.21
4 0.66 0.41 0.29
5 0.90 0.53 0.38
6 1.21 0.67 0.47
7 1.71 0.81 0.57
8 0.98 0.67
9 1.19 0.78
10 1.45 0.89
11 1.91 1.02
12 1.18
13 1.36
14 1.61
15 2.04
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Table 6
Effects from a seven-factors Plackett-Burman design (case study extracted from [15])

Factor (definition) |Effect| Rankit

Standard concentration (D) 0.075 0.09

Ionic strength buffer (A) 0.795 0.27

pH of buffer (G) 0.860 0.46

Flow mobile phase (B) 0.860 0.66

Mobile phase composition (E) 0.970 0.90

Detection wavelength (F) 1.035 1.21

Age of the standard (C) 4.945 1.71
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Table 7

Composition of the mobile phase during the solvent gradient (% volume fractions); A =
0.25% ammonium acetate in water, B = acetonitrile, C = water

Solvent Time (min)
0 13 15 17 22

A

B

C

50

25

25

50

43

7

50

43

7

50

25

25

50

25

25

Table 8
Factors and levels investigated in the robustness test.
Legend : Alltech = Alltech Hypersyl 3µm BDS C18, and Prodigy = Phenomenex Prodigy
3µm ODS (3) 100 A C18.

Factor Units Limits Level (-1) Level (+1) Nominal

1. The flow of the mobile phase ml/min ± 0.1 1.4 1.6 1.5

2. The pH of the buffer - ± 0.3 6.5 7.1 6.8

3. The column temperature °C ± 5 23 33 ambient

4. The column manufacturer Alltech Prodigy Alltech

5. Percentage organic solvent

(%B) in the mobile phase at the

start of the gradient

% ±1 24 26 25

6. %B in the mobile phase at the

end of the gradient

% ±2 41 45 43

7. Concentration of the buffer % m/v ±0.025 0.225 0.275 0.25

8.  The wavelength of the

detector

nm ±5 260 270 265
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Table 9 : The selected Plackett-Burman design
Legend : -1 = low factor level, 1 = high factor level

Factors
A B C D E F G H I J K

Exp.
No.

pH Column Dum1 Temp %B
begin

%B
end

Dum2 Flow Wave-
length

Buffer-
conc.

Dum3

1 1 1 1 -1 1 1 -1 1 -1 -1 -1
2 1 1 -1 1 -1 -1 -1 1 1 1 -1
3 1 -1 1 1 -1 1 -1 -1 -1 1 1
4 1 -1 -1 -1 1 1 1 -1 1 1 -1
5 1 -1 1 -1 -1 -1 1 1 1 -1 1
6 -1 1 1 1 -1 1 1 -1 1 -1 -1
7 -1 1 -1 -1 -1 1 1 1 -1 1 1
8 -1 -1 -1 1 1 1 -1 1 1 -1 1
9 -1 -1 1 1 1 -1 1 1 -1 1 -1
10 -1 1 1 -1 1 -1 -1 -1 1 1 1
11 1 1 -1 1 1 -1 1 -1 -1 -1 1
12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Abbreviations Factor
1. pH pH of the buffer

2. Column Column manufacturer

3. Dum1, dum2, dum3 Dummy variables

4. Temp Column temperature

5. % B begin Percentage B in the mobile phase at the start of the gradient

6. % B end Percentage B in the mobile phase at the end of the gradient

7. Flow Flow of the mobile phase

8. Wavelength Wavelength of the detector

9. Buffer conc. Concentration of the buffer
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Table 10

Results of the experiments for the studied responses

Responses
Exp. %MC %RC1 %RC2 Rs(MC-RC1) k’(MC) Asf(MC) tR(RC2)

1 101.6 100.9 101.4 5.691 3.800 0.813 11.500
2 101.7 101.2 102.7 7.484 5.083 1.031 13.000
3 101.6 101.7 101.3 5.770 4.000 1.453 9.833
4 101.9 103.0 102.9 5.025 3.167 1.549 9.483
5 101.8 99.3 99.1 5.440 3.800 1.458 10.317
6 101.1 99.9 101.7 5.711 5.817 0.861 12.567
7 101.1 100.8 101.4 5.932 5.250 0.836 12.083
8 101.6 100.2 98.8 4.962 3.200 1.059 8.417
9 98.4 97.1 101.8 5.427 3.367 0.977 9.200
10 99.7 100.5 99.3 6.344 5.350 0.853 13.800
11 99.7 98.6 98.7 6.715 4.783 0.920 13.317
12 102.3 101.1 103.1 5.186 4.933 1.412 11.150

Mean 101.0 100.4 101.0 5.807 4.379 1.102 11.222
RSD 1.15 1.52 1.61
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Table 11

(a) Effects of the factors on the different responses, and

(b) Critical effects obtained from the different statistical interpretation methods

(a) Effects on
Factors %MC %RC1 %RC2 Rs(MC-

RC1)
k’(MC) Asf(MC) tR(RC2)

pH 0.683 0.850 0.000 0.427 -0.547 0.204 0.039
Column -0.450 -0.083 -0.300 1.011 1.269 -0.432 2.978

Dum1 -0.683 -0.917 -0.500 -0.154 -0.047 -0.065 -0.039
Temp -0.717 -1.150 -0.367 0.408 -0.008 -0.103 -0.333

%B begin -1.117 -0.617 -1.067 -0.226 -0.869 -0.147 -0.539
%B end 0.883 1.450 0.467 -0.584 -0.347 -0.013 -1.150

Dum2 -0.750 -1.150 -0.167 -0.198 -0.030 -0.003 -0.122
Flow -0.017 -0.883 -0.300 0.031 -0.592 -0.146 -0.939

Wavelength 0.517 0.650 -0.533 0.041 0.047 0.067 0.084
Buffer conc. -0.617 0.717 1.100 0.380 -0.019 0.029 0.022

Dum3 -0.250 -0.350 -2.500 0.106 0.036 -0.011 0.144

(b) Critical effects for
%MC %RC1 %RC2 Rs(MC-

RC1)
k’(MC) Asf(MC) tR(RC2)

Experimental error estimated from dummy factors
α = 0.05 1.919 2.778 4.694 0.500 0.122 0.121 0.354

Without Dum3: 1.604
α = 0.1 1.419 2.054 3.471 0.370 0.090 0.090 0.262

Without Dum3: 1.088

Experimental error estimated from Dong’s criterion
ME (α = 0.05) 1.476 1.939 1.307 0.691 0.084 0.228 0.545
ME (α = 0.1) 1.205 1.582 1.064 0.562 0.067 0.186 0.440
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Table 12 : Significance of the factor effects on the different responses,
(a) when critical effects are estimated using dummy effects, and
(b) when Dong’s criterion was used
Legend : (a) ** = significance at α=0.10 level, * = significance at α=0.05 level;

(b) •• = significant to ME (α=0.10), • = significant to ME(α=0.05)

(a) Significance of factor effects on
Factors %MC %RC1 %RC2

a(Without Dum3)

Rs(MC-
RC1)

k’(MC) Asf(MC) tR(RC2)

pH - - - ** * * -
Column - - - * * * *

Dum1 - - - - - - -
Temp - - - ** - ** **

%B begin - - - - * * *
%B end - - - * * - *

Dum2 - - - - - - -
Flow - - - - * * *

Wavelength - - - - - - -
Buffer conc. - -        - (**)a ** - - -

Dum3 - -      - (*)a - - - -

(b) Significance of factor effects on
Factors %MC %RC1 %RC2 Rs(MC-

RC1)
k’(MC) Asf(MC) tR(RC2)

pH - - - - • •• -
Column - - - • • • •

Dum1 - - - - - - -
Temp - - - - - - -

%B begin - - •• - • - ••
%B end - - - •• • - •

Dum2 - - - - - - -
Flow - - - - • - •

Wavelength - - - - - - -
Buffer conc. - - •• - - - -

Dum3 - - • - - - -
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Table 13

(a) Predicted worst-case factor-level combinations for the different responses, and

(b) results at these conditions together with the derived SST-limits.

(a) Worst-case factor levels for

Factors
Rs(MC-

RC1)
k’(MC) Asf(MC)

pH -1 +1 +1
Column -1 -1 -1

Temp -1 0 -1
%B begin 0 +1 -1

%B end +1 +1 0
Flow 0 +1 -1

Wavelength 0 0 0
Buffer conc. -1 0 0

(b)
Run Rs(MC-RC1) k’(MC) Asf(MC)

1 4.870 2.800 1.453
2 4.819 2.800 1.483
3 4.702 2.817 1.429

Mean 4.797 2.806 1.455
Std. dev. (s) 0.0861 9.81*E-03 0.0271

n 3 3 3
SST-limits from worst case results

4.797 – 2.92 
3

0861.0

= 4.65

2.806 – 2.92 
3

0098.0

= 2.79

1.455 + 2.92 00271
3

.

= 1.59

SST-limits from theoretical model
4.40 2.57 1.62
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Figure captions

Figure 1: Schematic representation of the different steps in a robustness test

Figure 2: (a) Normal probability plot, and (b) Half-normal probability plot

Figure 3: Half-normal probability plot for the effects of Table 6 with identification of the
critical effects ME and SME.

Figure 4: Normal probability and half-normal plots for the factor effects on the responses of
Table 11a.
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Figure 1: Schematic representation of the different steps in a robustness test
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Figure 2: (a) Normal probability plot, and (b) Half-normal probability plot for the effects
estimated from a N=12 Plackett-Burman design.
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Figure 3
Half-normal probability plot for the effects of Table 6 with identification of the critical
effects ME and SME.
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Figure 4: Normal probability and half-normal plots for the factor effects on the responses of
Table 11a.
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	Chromatographic conditions : a 10 cm ( 4.6 mm ID column, packed with Hypersil BDS-C18, 3 µm particle size is prescribed. The substances are eluted in a gradient elution mode at a flow rate of 1.5 ml/min and at ambient temperature. The solvent gradient us
	Potential factors to be examined in the robustness testing of some analytical methods. HPLC = high performance liquid chromatography, TLC = thin layer chromatography and CE = capillary electrophoresis.
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	Legend : -1 = low factor level, 1 = high factor level
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